

Oregon NASA Space Grant Consortium

2020-21 STudent Academic Research Review (STARR) Award Program

Open to students attending OSGC Community College and 4-Year Member Institutions

Program Guidelines

Release Date: May 1, 2020 Application Deadline June 19, 2020

Oregon NASA Space Grant Consortium

92 Kerr Administration Building. Corvallis, OR 97331-2103

Phone: 541.737.2414 Fax: 541.737.9946

http://www.spacegrant.oregonstate.edu

STARR Award Program Guide

Index

INTRODUCTION	Page 3
ELIGIBLE INSTITUTIONS	Page 3
PROGRAM DESCRIPTION	Page 4
AWARD TERMS AND CONDITIONS	Page 4
DATE AND DEADLINES	Page 5
ELIGIBILITY	Page 5
APPLICATION REQUIREMENTS AND FORMAT GUIDELINES	Page 5
REVIEW AND SELECTION PROCESS	Page 6
DELIVERABLES IF AWARDED	Page 7
FOR MORE INFORMATION	Page 7
APPENDIX A: Agency Information and Strategic Framework	Page 8
APPENDIX B: Research Priorities for Nasa Mission Directorates	Page 10

STARR Award Program Guide

INTRODUCTION

A member of National Aeronautics and Space Administration's (NASA) National Space Grant College and Fellowship Program (Space Grant), the Oregon NASA Space Grant Consortium (OSGC) supports the agency's objectives of fostering and encouraging careers in Science, Technology, Engineering, and Mathematics (STEM) and STEM education to develop a skilled, high-performing, capable, and diverse next-generation workforce. Access to experiential learning and research opportunities are crucial to enhancing a student's academic experience in order to meet the needs of NASA and the nation. OSGC programs are directed towards undergraduate students in STEM fields and designed to complement a student's academic career experience. In support of the national priority to increase diversity in STEM fields, women, individuals from underrepresented groups in the STEM fields, and persons with disabilities are strongly encouraged to participate.

The Oregon Space Grant STudent Academic Research Review (STARR) Award Program is directed towards STEM and STEM Education students attending our member community colleges and four-year universities who are interested in space science/aerospace-related careers. The STARR Program provides students an opportunity to apply for a one-year award to enhance and supplement their academic study in STEM and STEM education. These awards also serve to recognize student's achievements in these fields.

STARR awards are open to students in a broad range of STEM disciplines, including aerospace-related engineering and mathematics, as well as earth sciences, chemistry, biology, food science, and computer science relating to NASA's vision and mission. Students are encouraged to contact OSGC with questions about field of study eligibility.

ELIGIBLE INSTITUTIONS

Applicants must be enrolled and in good academic standing throughout the entire award period at one of the following OSGC member institutions.

Table 1: Affiliate Member Institutions and Representatives

Community College Affiliate Member Institution	Representative	Email
Lane Community College	Dennis Gilbert	gilbertd@lanecc.edu
Linn-Benton Community College	Kristina Holton	holtonk@linnbenton.edu
Oregon Coast Community College	Matthew Fisher	matthew.fisher@oregoncoastcc.org
Portland Community College Cascade Campus	Deborah Cochrane	dcochran@pcc.edu
Portland Community College Rock Creek	Andy Hilt	andrew.hilt@pcc.edu
Portland Community College Southeast Campus	Julia Betts	julia.betts@pcc.edu
Portland Community College Sylvania Campus	Toby Dittrich	tdittric@pcc.edu
Southwestern Oregon Community College	Aaron Coyner	aaron.coyner@socc.edu
4-Year Affiliate Member Institution	Representative	Email
Eastern Oregon University	Colby Heideman	cheideman@eou.edu
Eastern Oregon University George Fox University	Colby Heideman Robert Hamilton	cheideman@eou.edu rhamilto@georgefox.edu
	•	
George Fox University	Robert Hamilton	rhamilto@georgefox.edu
George Fox University Oregon Institute of Technology	Robert Hamilton Eve Klopf	rhamilto@georgefox.edu eve.klopf@oit.edu
George Fox University Oregon Institute of Technology Oregon State University	Robert Hamilton Eve Klopf Nancy Squires	rhamilto@georgefox.edu eve.klopf@oit.edu squires@engr.orst.edu
George Fox University Oregon Institute of Technology Oregon State University Pacific University*	Robert Hamilton Eve Klopf Nancy Squires Kevin Carr	rhamilto@georgefox.edu eve.klopf@oit.edu squires@engr.orst.edu kcarr@pacificu.edu
George Fox University Oregon Institute of Technology Oregon State University Pacific University* Portland State University*	Robert Hamilton Eve Klopf Nancy Squires Kevin Carr Alex Ruzicka	rhamilto@georgefox.edu eve.klopf@oit.edu squires@engr.orst.edu kcarr@pacificu.edu Ruzickaa@pdx.edu
George Fox University Oregon Institute of Technology Oregon State University Pacific University* Portland State University* Southern Oregon University	Robert Hamilton Eve Klopf Nancy Squires Kevin Carr Alex Ruzicka Peter Wu	rhamilto@georgefox.edu eve.klopf@oit.edu squires@engr.orst.edu kcarr@pacificu.edu Ruzickaa@pdx.edu wu@sou.edu

*minority serving institution

PROGRAM DESCRIPTION

STARR, a research review program, is a stepping stone opportunity designed to help students have a more comprehensive understanding of the research process and be better prepared for future hands-on research opportunities such as NASA internships, Research Experience for Undergraduates (REUs), or senior capstone projects. Applicants select a topic to review that involves current NASA-related research. Selected topics must align with one or more of NASA's Mission Directorate's top priorities or speak to the challenges facing the execution of current missions. Topics should be specific and narrow in scope.

If awarded, STARR recipients will thoroughly review the selected research topic and write an original White Paper. The White Paper must include insight into the contributions of the research being conducted and demonstrate interdisciplinary applications of the research and how it might potentially extend to other areas of science or engineering relating to NASA's priorities and missions. Students will not be conducting hands-on research and will not need access to onsite resources.

STARR recipients must identify a faculty member at their respective institution who has expertise relevant to the research being reviewed and who agrees to serve as Faculty Advisor on the project. The advisor must be willing to review the student's work and provide guidance throughout the process; however, White Papers must ultimately be the original work of the student. Selected projects and advisors must be approved by the OSGC Affiliate Representative from the student's respective institution. In addition to the White Paper, students attending 4-year institutions will be required to submit a recorded presentation or present at an in-person symposium if circumstances allow.

AWARD TERMS AND CONDITIONS

Award Funds

A total of \$85,000 will be awarded in the 2020-21 STARR Program, contingent upon NASA funding. STARR awards will be competitively awarded to students enrolled at an OSGC affiliated community college or 4-year institution. Awards will be made in two disbursements; the first in October 2020, the second in May 2021 upon completion of deliverables. Awards are compensation of a student's time; supplies/equipment purchases are prohibited. Terms and conditions vary by type of institution.

Community College Students

- White Paper (minimum 6 pages, excluding references and graphs/charts) required
- \$3K per student award

4-Year Institution Students

- White Paper (minimum 8 pages, excluding references and graphs/charts) required
- Recorded presentation required
- \$5K per student award

Duration

STARR awards are a one-time, non-renewable, academic year-long award.

Number of Awards to be Funded

- Community College 10 STARR awards
- 4-Year University 11 STARR awards

Equal Opportunity/Diversity

Students from underserved groups and from groups underrepresented in STEM fields, women, and persons with disabilities are strongly encouraged to apply. OSGC seeks to recruit applicants from a variety of higher-education member institutions and disciplines.

DATES AND DEADLINES

- Application Deadline: June 19, 2020
- Letter of Recommendation Due: June 26, 2020
- Award Selections: August 2020
- Award Disbursements: October 2020 and May 2021
- Outline Due: April 9, 2021
- White Paper/Presentation Due: May 7, 2021

ELIGIBILITY

STARR awards are open to undergraduate students who meet the following eligibility criteria:

Community Colleges

- Student must be a US Citizen.
- Student must maintain good academic standing.
- Student is enrolled in a minimum of 6 credit hours per term in **STEM-related coursework** at an OSGC-affiliated community college at the time of application (spring 2020) and remains enrolled for the duration of the award (through spring 2021). Student may be dual-enrolled in an OSGC-affiliated community college and 4-year institution through the duration of the award.
- For community college STEM students not currently enrolled in STEM-related coursework, supplemental information may be provided, including but not limited to:
 - Documentation declaring a STEM-related major or degree path.
 - Documentation of degree plan provided by academic advisor (general or degree-specific), which includes STEM-related coursework.
 - Letter of recommendation from past STEM faculty member or mentor.

Please discuss options with your OSGC affiliate representative to ensure criteria are adequately met.

4-Year Institutions

- Student must be a US Citizen.
- Student must maintain good academic standing.
- Student is enrolled in a minimum of 12 credit hours per term at an OSGC-affiliated 4-year institution at the time of application (spring 2020) and remains enrolled for the duration of the award (through spring 2021).
- Student is enrolled in STEM, STEM education coursework, or an MAT program during the 2020-21 academic year.

See Table 1 for list of OSGC Member Institutions and Representatives.

APPLICATION REQUIREMENTS AND FORMAT GUIDELINES

Application packets for the STARR awards must include the following:

- Letter of Intent
- Project Description
- Student Resume
- Letter of Recommendation
- Academic Transcript

Documents are to be single-spaced, using standard $8\frac{1}{2} \times 11$ paper, in font not smaller than 12-point with a minimum of 1" margins. All pages must be numbered sequentially. Students will submit application packets online.

Letter of Intent (Page limit: 1 page)

Includes the following:

- Describe the Plan of Study for your STEM academic goals throughout your undergraduate program.
- Express your interest in a space science/aerospace related career.

- Briefly describe your skill sets and qualifications in context of this opportunity.
- Describe how this opportunity would benefit you and contribute to your academic and career goals and objectives.

Project Description (Page limit: 1 page)

Includes the following:

- State the research topic you have selected to review and provide an overview of the topic. Include why you are interested in this particular subject.
- Briefly state how the topic substantively aligns with one or more of NASA's Mission Directorate's top priorities and/or how it speaks to a specific challenge facing one of NASA's current missions.

Topics should be specific/narrow in scope. Students are expected to refer to *Appendix A. Agency Information and Strategic Framework* and *Appendix B. Research Priorities for NASA Mission Directorates* for guidance when selecting a research topic.

Note: If selected for a STARR award, students will review the chosen topic and elaborate on how it aligns with NASA's top priorities and/or how it speaks to the challenges facing NASA's missions. Students should be prepared to offer insight into the contributions of the research and demonstrate interdisciplinary applications and how the research could potentially extend to other areas of science or engineering relating to NASA's top priorities and missions.

Student Resume (Page limit: 1 page)

Include relevant employment, education, and extra-curricular activities. Resume should include current contact information including email, phone, and mailing address.

Letter of Recommendation (Page limit: 2 pages)

One letter of recommendation is required. The letter should specifically address your qualifications for receiving a STARR Award. Students will be asked to provide contact information for the person providing the letter of recommendation. Upon submission of your application, this individual will receive an email request for the letter. The letter of recommendation will be due one week after the student application is due.

Academic Transcript (Page limit: As needed)

A PDF of your academic transcript must be submitted with your online application. Unofficial transcripts from your college or university website are acceptable and should include record of the courses in which you are currently enrolled.

Online Application

Complete application packets will be submitted online:

- Community college student applications: https://spacegrant.net/apps/ors2
- 4-Year institution student applications: https://spacegrant.net/apps/ors1

REVIEW AND SELECTION PROCESS

Applications are evaluated for eligibility when received. Qualified applications will be reviewed by a diverse selection committee who will make recommendations for funding based on stated review criteria (see below). Preference may be given to women, individuals from underrepresented groups in the STEM fields, and individuals with disabilities.

Review Criteria

- Academic achievement
- Strength of Letter of Intent
- STEM related Plan of Study
- Demonstration of Space Science/Aerospace related career goals
- Selected research review topic is in alignment with one or more of NASA's Mission Directorate's top priorities and/or speaks to the challenges facing the execution of a current mission.
- Strength of recommendation

DELIVERABLES IF AWARDED

Student Profile Form

Students agree to complete an online Student Profile Form when they accept the award. This information is used for reporting to NASA's Office of STEM Engagement and for longitudinal tracking purposes to evaluate the effectiveness of NASA's higher education programs.

Faculty Advisor Statement of Support

STARR recipients must identify a faculty member at their respective institution who has expertise relevant to the research being reviewed and agrees to serve as Faculty Advisor on the project. The advisor must be willing to review the student's work and provide guidance throughout the process. Advisors must be affiliated with an OSGC member institution; OSGC Affiliate Representatives may also serve as Faculty Advisor on a project. Affiliate Representatives may assist students in identifying a faculty member who has expertise relevant to the project. Faculty Advisors must provide a brief Statement of Support, approved by the OSGC Affiliate Representative from the student's respective institution. If the OSGC Affiliate Representative is serving as the advisor for the project, the affiliate representative would provide the Statement of Support.

Descriptive Outline

STARR recipients are required to submit a descriptive outline of the project approximately one month prior to the White Paper due date.

White Paper

Students selected to receive STARR awards are required to write an original White Paper describing the findings of the research review of the selected topic, how it aligns with one or more of NASA's Mission Directorate's top priorities, and/or how it speaks to the challenges facing the execution of current NASA missions. Students must include insight into the contributions of the research being conducted and demonstrate interdisciplinary applications of the research and how it might potentially extend to other areas of science and/or engineering relating to NASA's top priorities and missions.

Students will not be conducting hands-on research and will not need access to onsite resources. Faculty Advisors are encouraged to review the paper and offer guidance, but White Papers must ultimately be the original work of the student; plagiarism results in loss of award.

Community College Students

- White Paper must be a minimum of 6 pages, excluding references and graphs/charts

4-Year Institution Students

- White Paper must be a minimum of 8 pages, excluding references and graphs/charts

Recorded Presentation

In addition to the White Paper, STARR recipients attending 4-year institutions are required to submit a recorded presentation describing the research review project. Students may be asked to present at an in-person symposium if circumstances allow. This requirement is for 4-year institution students only.

Contact Information

The student agrees to notify OSGC of any changes in mailing address, email, and telephone number for contact purposes.

Information Release

The student grants permission to release and/or publish requested recipient information to NASA or other appropriate parties.

FOR MORE INFORMATION

Direct questions to Catherine Lanier, OSGC Associate Director, via email at catherine.lanier@oregonstate.edu or by phone at 541.737.2414.

Visit the Oregon Space Grant Consortium website: http://spacegrant.oregonstate.edu.

STARR Award Program details: https://spacegrant.oregonstate.edu/scholarships-and-undergraduate-fellowships

APPENDIX A: AGENCY INFORMATION AND STRATEGIC FRAMEWORK

NASA's current topics and relevant missions are listed below. Students should use these priorities to guide them in the selection of a STARR research review topic.

Humans in Space

International Space Station (ISS) - Commercial Crew Program (CCP) - NASA Astronauts - Low Earth Orbit (LEO) Economy

Moon to Mars

Commercial Lunar Payload Series (CLPS) Initiative - Lunar Gateway - Artemis Mission - Space Launch System (SLS)

Earth

Air - Climate - Hazards - Water, Oceans, and Ice - Land

Space Tech

Space Travel - Living in Space - Manufacturing, Materials, and 3-D Printing - Robotics - Science Instruments - High-Tech Computing

Flight

Green Aviation - Future Aircraft - Supersonic Flight - Reducing Flight Delays - Unmanned Aircraft

Solar System and Beyond

Planets, Moons, and Dwarf Planets - The Search for Life and Exoplanets - The Sun - Stars and Galaxies - Black Holes - Dark Energy and Dark Matter

Current High-Profile NASA Missions

- Artemis Program
- Commercial Crew Program
- Curiosity Mars Rover
- Hubble Space Telescope
- InSight Mars Lander
- International Space Station
- James Webb Space Telescope
- Juno: Mission of Jupiter
- Lunar Reconnaissance Orbiter
- Mars Perseverance Rover
- New Horizons: Pluto and Beyond
- OSIRIS-Rex Asteroid Mission
- Parker Solar Probe

NASA Vision

To reach for new heights and reveal the unknown so that what we do and learn will benefit all humankind.

NASA Mission

Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and bring new knowledge and opportunities back to Earth. Support growth of the Nation's economy in space and aeronautics, increase understanding of the universe and our place in it, work with industry to improve America's aerospace technologies, and advance American leadership.

Strategic themes that make up the foundation of the 2018 Strategic Plan and NASA's goals

- **DISCOVER** Expand human knowledge through new scientific discoveries
- **EXPLORE** Extend human presence deeper into space and to the Moon for sustainable long-term exploration and utilization
- **DEVELOP** Address national challenges and catalyze economic growth

• **ENABLE** – Optimize capabilities and operations

NASA 2018 Strategic Plan

https://www.nasa.gov/sites/default/files/atoms/files/nasa 2018 strategic plan.pdf

NASA's vision and mission draw support from the organizational structure of the Mission Directorates, each with a specific responsibility.

NASA's Mission Directorates

Aeronautics Research Mission Directorate (ARMD): Enables a safer, more secure, efficient, and environmentally friendly air transportation system

Transforms aviation with research to dramatically reduce the environmental impact of flight, and improves
aircraft and operations efficiency while maintaining safety in increasingly crowded skies. ARMD also generates
innovative aviation concepts, tools, and technologies for development and maturation by the aviation community.
https://www.nasa.gov/aeroresearch

Human Exploration and Operations (HEOMD): Operates the International Space Station and prepare for human exploration beyond low Earth orbit

• Leads human exploration in and beyond low Earth orbit by developing new transportation systems and performing scientific research to enable sustained and affordable human life outside of Earth. HEOMD also manages space communication and navigation services for the Agency and its international partners. http://www.nasa.gov/directorates/heo/home/

Science Mission Directorate (SMD): Exploring the Earth-Sun system, our solar system, and the universe beyond.

• Expands the frontiers of Earth science, heliophysics, planetary science, and astrophysics. Using robotic observatories, explorer craft, ground-based instruments, and a peer-reviewed portfolio of sponsored research, SMD seeks knowledge about our solar system, the farthest reaches of space and time, and our changing Earth. http://science.nasa.gov/

Space Technology Mission Directorate (STMD): Develops the crosscutting, advanced pioneering new technologies needed for current and future missions, benefiting the aerospace industry and other agencies, and addressing national needs.

Pursues transformational technologies that have high potential for offsetting future mission risk, reducing cost, and advancing existing capabilities. STMD uses merit-based competition to conduct research and technology development, demonstration, and infusion of these technologies into NASA's missions and American industry. This mission directorate is being refocused as a new Exploration Research & Technology (ER&T) organization to support exploration as a primary customer. http://www.nasa.gov/directorates/spacetech/home/index.html.

The Mission Support Directorate (MSD): Enables the Agency's missions by managing institutional services and capabilities.

• MSD is actively reducing institutional risk to NASA's current and future missions by improving processes, stimulating efficiency, and providing consistency and uniformity across institutional standards and practices. https://www.nasa.gov/msd.

See Appendix B. Research Priorities for NASA Mission Directorates for detailed Mission Directorate descriptions.

APPENDIX B. RESEARCH PRIORITIES FOR NASA MISSION DIRECTORATES

Note: This information is per NASA Office of STEM Engagement and current as of 6/28/2019.

I. Aeronautics Research Mission Directorate Research

Aeronautics Research Missions Directorate (ARMD) conducts high-quality, cutting-edge research that generates innovative concepts, tools, and technologies to enable revolutionary advances in our Nation's future aircraft, as well as in the airspace in which they will fly. ARMD programs will facilitate a safer, more environmentally friendly, and more efficient national air transportation system. Using a Strategic Implementation Plan, NASA ARMD sets forth the vision for aeronautical research aimed at the next 25 years and beyond. It encompasses a broad range of technologies to meet future needs of the aviation community, the nation, and the world for safe, efficient, flexible, and environmentally sustainable air transportation. Additional information on ARMD can be found at: http://www.aeronautics.nasa.gov.

II. Human Exploration and Operations Mission Directorate Research

Human Exploration and Operations Mission Directorate (HEOMD) provides the Agency with leadership and management of NASA space operations related to human exploration in and beyond low-Earth orbit. HEOMD also oversees low-level requirements development, policy, and programmatic oversight. The International Space Station (ISS), currently orbiting the Earth with a crew of six, represents the NASA exploration activities in low-Earth orbit. Exploration activities beyond low Earth orbit include the management of Commercial Space Transportation, Exploration Systems Development, Human Space Flight Capabilities, Advanced Exploration Systems, and Space Life Sciences Research & Applications. The directorate is similarly responsible for Agency leadership and management of NASA space operations related to Launch Services, Space Transportation, and Space Communications in support of both human and robotic exploration programs. Additional information on HEOMD can be found at: (http://www.nasa.gov/directorates/heo/home/index.html)

Areas of Interest

Human Research Program

The Human Research Program (HRP) is focused on investigating and mitigating the highest risks to human health and performance in order to enable safe, reliable, and productive human space exploration. The HRP budget enables NASA to resolve health risks in order for humans to safely live and work on missions in the inner solar system. HRP conducts research, develops countermeasures, and undertakes technology development to address human health risks in space and ensure compliance with NASA's health, medical, human performance, and environmental standards.

Space Biology

The Space Biology research has three primary goals:

- Effectively use microgravity and other characteristics of the space environment to enhance our understanding of fundamental biological processes;
- Develop the scientific and technological foundations for a safe, productive human presence in space for extended periods and in preparation for exploration;
- Apply this knowledge and technology to improve our nation's competitiveness, education, and the quality of life on Earth.

These goals are achieved by sponsoring research studies in five program elements to contribute basic knowledge of biological adaptation to spaceflight to accelerate solutions to biomedical problems affecting human exploration of space as well as human health on Earth: Microbiology; Cell and Molecular Biology; Plant Biology; Animal Biology; and Developmental Biology

Current Space Biology emphases include:

- Using ground-based facilities to characterize the effects of space-like radiation on biological systems. NASA is interested in projects that will characterize how radiation exposure impacts living organisms during a single lifecycle, or over multiple generations.
- Using ground-based simulations to study how spaceflight conditions might impact plant and microbial interactions and growth. Questions of interest to NASA include, but are not limited to, whether spaceflight induces changes in the virulence of plant pathogens and/or whether spaceflight might change benign or commensal microbes on plants into pathogenic ones.
- Using ground-based facilities to simulate a range of gravitational levels on biological specimens to understand and characterize the dose-response curve between 0 and 2 G for various biological systems to determine A) if there are G-level thresholds required to trigger gravity-specific responses in living organisms, and B) the effect that exposure to levels of gravity similar to those encountered on Mars (.38 G) or the moon (0.16 G), and/or hypergravity has on living organisms.

Further details about Space Biology goals, objectives and progress can be found at the Space Biology Website.

Physical Science Research

The Physical Science Research Program, along with its predecessors, has conducted significant fundamental and applied research, both which have led to improved space systems and produced new products offering benefits on Earth. NASA's experiments in various disciplines of physical science reveal how physical systems respond to the near absence of gravity. They also reveal how other forces that on Earth are small compared to gravity, can dominate system behavior in space.

The Physical Science Research Program also benefits from collaborations with several of the International Space Station international partners—Europe, Russia, Japan, and Canada—and foreign governments with space programs, such as France, Germany and Italy. The scale of this research enterprise promises new possibilities in the physical sciences, some of which are already being realized both in the form of innovations for space exploration and in new ways to improve the quality of life on Earth.

Research in physical sciences spans from basic and applied research in the areas of:

- Biophysics: biological macromolecules, biomaterials.
- Combustion science: spacecraft fire safety, droplets, gaseous (premixed and non- premixed), solid fuels, supercritical reacting fluids.
- Complex fluids: colloidal systems, liquid crystals, foams, gels, granular flows.
- Fluid physics: adiabatic two-phase flow, boiling and condensation, capillary flow, interfacial phenomena, cryogenics storage and handling.
- Fundamental physics: space optical/atomic clocks, quantum test of equivalence principle, cold atom physics, critical point phenomena, dusty plasmas.
- Materials science: glasses and ceramics, granular materials, metals, polymers and organics, semiconductors.

Implementing Centers: NASA's Physical Sciences Research Program is carried out at the Glenn Research Center (GRC), the Jet Propulsion Laboratory (JPL) and the Marshall Space Flight Center (MSFC). Further information on physical sciences research is available at http://issresearchproject.nasa.gov/
Engineering Research

- Spacecraft: Guidance, navigation and control; thermal; electrical; structures; software; avionics; displays; high speed re-entry; modeling; power systems; interoperability/commonality; advanced spacecraft materials; crew/vehicle health monitoring; life support.
- Propulsion: Propulsion methods that will utilize materials found on the moon or Mars, "green" propellants, onorbit propellant storage, motors, testing, fuels, manufacturing, soft landing, throttle-able propellants, high performance, and descent.

- Robotic Systems for Precursor Near Earth Asteroid (NEA) Missions: Navigation and proximity operations
 systems; hazard detection; techniques for interacting and anchoring with Near Earth Asteroids; methods of remote
 and interactive characterization of Near Earth Asteroid (NEA) environments, composition and structural
 properties; robotics (specifically environmental scouting prior to human arrival and later to assist astronauts with
 NEA exploration); environmental analysis; radiation protection; spacecraft autonomy, enhanced methods of NEA
 characterization from earth-based observation.
- Robotic Systems for Lunar Precursor Missions: Precision landing and hazard avoidance hardware and software; high-bandwidth communication; in-situ resource utilization (ISRU) and prospecting; navigation systems; robotics (specifically environmental scouting prior to human arrival, and to assist astronaut with surface exploration); environmental analysis, radiation protection.
- Data and Visualization Systems for Exploration: Area focus on turning precursor mission data into meaningful
 engineering knowledge for system design and mission planning of lunar surface and NEAs. Visualization and
 data display; interactive data manipulation and sharing; mapping and data layering including coordinate
 transformations for irregular shaped NEAs; modeling of lighting and thermal environments; simulation of
 environmental interactions including proximity operations in irregular micro-G gravity fields and physical
 stability of weakly bound NEAs.
- Research and technology development areas in HEOMD support launch vehicles, space communications, and the International Space Station. Examples of research and technology development areas (and the associated lead NASA Center) with great potential include:

Processing and Operations

- Crew Health and Safety Including Medical Operations (Johnson Space Center (JSC))
- In-helmet Speech Audio Systems and Technologies (Glenn Research Center (GRC))
- Vehicle Integration and Ground Processing (Kennedy Space Center (KSC))
- Mission Operations (Ames Research Center (ARC))
- Portable Life Support Systems (JSC)
- Pressure Garments and Gloves (JSC)
- Air Revitalization Technologies (ARC)
- In-Space Waste Processing Technologies (JSC)
- Cryogenic Fluids Management Systems (GRC)

Space Communications and Navigation

- Coding, Modulation, and Compression (Goddard Spaceflight Center (GSFC)
- Precision Spacecraft & Lunar/Planetary Surface Navigation and Tracking (GSFC)
- Communication for Space-Based Range (GSFC)
- Antenna Technology (Glenn Research Center (GRC))
- Reconfigurable/Reprogrammable Communication Systems (GRC)
- Miniaturized Digital EVA Radio (Johnson Space Center (JSC))
- Transformational Communications Technology (GRC)
- Long Range Optical Telecommunications (Jet Propulsion Laboratory (JPL))
- Long Range Space RF Telecommunications (JPL)
- Surface Networks and Orbit Access Links (GRC)
- Software for Space Communications Infrastructure Operations (JPL)
- TDRS transponders for launch vehicle applications that support space communication and launch services (GRC)

Space Transportation

- Optical Tracking and Image Analysis (KSC)
- Space Transportation Propulsion System and Test Facility Requirements and Instrumentation (Stennis Space Center (SSC))

- Automated Collection and Transfer of Launch Range Surveillance/Intrusion Data (KSC)
- Technology tools to assess secondary payload capability with launch vehicles (KSC)
- Spacecraft Charging/Plasma Interactions (Environment definition & arcing mitigation) (Marshall Space Flight Center (MSFC)

III. Science Mission Directorate Research

Science Mission Directorate (SMD) leads the Agency in four areas of research: Earth Science, Heliophysics, Planetary Science, and Astrophysics. SMD, using the vantage point of space to achieve with the science community and our partners a deep scientific understanding of our planet, other planets and solar system bodies, the interplanetary environment, the Sun and its effects on the solar system, and the universe beyond. In so doing, we lay the intellectual foundation for the robotic and human expeditions of the future while meeting today's needs for scientific information to address national concerns, such as climate change and space weather. At every step we share the journey of scientific exploration with the public and partner with others to substantially improve science, technology, engineering and mathematics (STEM) education nationwide. Additional information on SMD can be found at: (http://nasascience.nasa.gov)

Areas of Interest

SMD has developed science objectives and programs to answer fundamental questions in Earth and space sciences in the context of our national science agenda. The knowledge gained by researchers supporting NASA's Earth and space science program helps to unravel mysteries that intrigue us all.

- What drives variations in the Sun, and how do these changes impact the solar system and drive space weather?
- How and why are Earth's climate and environment changing?
- How did our solar system originate and change over time?
- How did the universe begin and evolve, and what will be its destiny?
- How did life originate, and are we alone?

Each of the SMD's four science divisions – Heliophysics, Earth Science, Planetary Science, and Astrophysics – makes important contributions to address national and Agency goals. The NASA 2018 Strategic Plan reflects the direction NASA has received from our government's executive branch and Congress, advice received from the nation's scientific community, the principles and strategies guiding the conduct of our activities, and the challenges SMD faces. Specifically,

Heliophysics Division

Heliophysics encompasses science that improves our understanding of fundamental physical processes throughout the solar system, and enables us to understand how the Sun, as the major driver of the energy throughout the solar system, impacts our technological society. The scope of heliophysics is vast, spanning from the Sun's interior to Earth's upper atmosphere, throughout interplanetary space, to the edges of the heliosphere, where the solar wind interacts with the local interstellar medium. Heliophysics incorporates studies of the interconnected elements in a single system that produces dynamic space weather and that evolves in response to solar, planetary, and interstellar conditions.

The Agency's strategic objective for heliophysics is to understand the Sun and its interactions with Earth and the solar system, including space weather. The heliophysics decadal survey conducted by the National Research Council (NRC), Solar and Space Physics: A Science for a Technological Society (http://www.nap.edu/catalog/13060/solar-and-space-physics-a-science-for-a-technological-society), articulates the scientific challenges for this field of study and recommends a slate of design reference missions to meet them, to culminate in the achievement of a predictive capability to aid human endeavors on Earth and in space. The fundamental science questions are:

- What causes the Sun to vary?
- How do the geospace, planetary space environments and the heliosphere respond?
- What are the impacts on humanity?

To answer these questions, the Heliophysics Division implements a program to achieve three overarching goals:

- Explore the physical processes in the space environment from the Sun to the Earth and throughout the solar system
- Advance our understanding of the connections that link the Sun, the Earth, planetary space environment, and the outer reaches of our solar system
- Develop the knowledge and capability to detect and predict extreme conditions in space to protect life and society and to safeguard human and robotic explorers beyond Earth

Earth Science Division

Our planet is changing on all spatial and temporal scales and studying the Earth as a complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. The purpose of NASA's Earth science program is to advance our scientific understanding of Earth as a system and its response to natural and human-induced changes and to improve our ability to predict climate, weather, and natural hazards.

NASA's ability to observe global change on regional scales and conduct research on the causes and consequences of change position it to address the Agency strategic objective for Earth science, which is to advance knowledge of Earth as a system to meet the challenges of environmental change, and to improve life on our planet. NASA addresses the issues and opportunities of climate change and environmental sensitivity by answering the following key science questions through our Earth science program:

- How is the global Earth system changing?
- What causes these changes in the Earth system?
- How will the Earth system change in the future?
- How can Earth system science provide societal benefit?

These science questions translate into seven overarching science goals to guide the Earth Science Division's selection of investigations and other programmatic decisions:

- Advance the understanding of changes in the Earth's radiation balance, air quality, and the ozone layer that result from changes in atmospheric composition (Atmospheric Composition)
- Improve the capability to predict weather and extreme weather events (Weather)
- Detect and predict changes in Earth's ecosystems and biogeochemical cycles, including land cover, biodiversity, and the global carbon cycle (Carbon Cycle and Ecosystems)
- Enable better assessment and management of water quality and quantity to accurately predict how the global water cycle evolves in response to climate change (Water and Energy Cycle)
- Improve the ability to predict climate changes by better understanding the roles and interactions of the ocean, atmosphere, land and ice in the climate system (Climate Variability and Change)
- Characterize the dynamics of Earth's surface and interior, improving the capability to assess and respond to natural hazards and extreme events (Earth Surface and Interior)
- Further the use of Earth system science research to inform decisions and provide benefits to society

Two foundational documents guide the overall approach to the Earth science program: the NRC 2007 Earth science decadal survey (http://www.nap.edu/catalog/11820/earth-science- and- applications-from-space-national-imperatives-for-the) and NASA's 2010 climate-centric architecture plan (https://smd-prod.s3.amazonaws.com/science-pink/s3fs-public/atoms/files/Climate Architecture Final.pdf)

The former articulates the following vision for Earth science research and applications in support of society: Understanding the complex, changing planet on which we live, how it supports life and how human activities affect its ability to do so in the future is one of the greatest intellectual challenges facing humanity. It is also one of the most challenges for society as it seeks to achieve prosperity, health, and sustainability.

The latter addresses the need for continuity of a comprehensive set of key climate monitoring measurements, which are critical to informing policy and action, and which other agencies and international partners had not planned to continue. NASA's ability to view the Earth from a global perspective enables it to provide a broad, integrated set of uniformly high-quality data covering all parts of the planet. NASA shares this unique knowledge with the global community, including members of the science, government, industry, education, and policy-maker communities.

Planetary Science Division

Planetary science is a grand human enterprise that seeks to understand the history of our solar system and the distribution of life within it. The scientific foundation for this enterprise is described in the NRC planetary science Vision and Voyages for Planetary Science in the Decade (http://www.nap.edu/catalog/13117/vision-and-voyages-for-planetary-science-in-the-decade-2013-2022). Planetary science missions inform us about our neighborhood and our own origin and evolution; they are necessary precursors to the expansion of humanity beyond Earth. Through five decades of planetary exploration, NASA has developed the capacity to explore all of the objects in our solar system. Future missions will bring back samples from some of these destinations, allowing iterative detailed study and analysis back on Earth. In the future, humans will return to the Moon, go to asteroids, Mars, and ultimately other solar system bodies to explore them, but only after they have been explored and understood using robotic missions.

NASA's strategic objective in planetary science is to **ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere**. We pursue this goal by seeking answers to fundamental science questions that guide NASA's exploration of the solar system:

- How did our solar system form and evolve?
- Is there life beyond Earth?
- What are the hazards to life on Earth?

The Planetary Science Division has translated these important questions into science goals that guide the focus of the division's science and research activities:

- Explore and observe the objects in the solar system to understand how they formed and evolve
- Advance the understanding of how the chemical and physical processes in our solar system operate, interact and
 evolve
- Explore and find locations where life could have existed or could exist today.
- Improve our understanding of the origin and evolution of life on Earth to guide our search for life elsewhere
- Identify and characterize objects in the solar system that pose threats to Earth, or offer resources for human exploration

In selecting new missions for development, NASA's Planetary Science Division strives for balance across mission destinations, using different mission types and sizes. Achievement of steady scientific progress requires a steady cadence of missions to multiple locations, coupled with a program that allows for a consistent progression of mission types and capabilities, from small and focused, to large and complex, as our investigations progress. The division also pursues partnerships with international partners to increase mission capabilities and cadence and to accomplish likeminded objectives.

See Section 4.3 of the NASA 2014 Science Plan for specifics, including missions currently in operation, in formulation or development, and planned for the future.

Astrophysics Division

Astrophysics is the study of phenomena occurring in the universe and of the physical principles that govern them. Astrophysics research encompasses a broad range of topics, from the birth of the universe and its evolution and composition, to the processes leading to the development of planets and stars and galaxies, to the physical conditions of matter in extreme gravitational fields, and to the search for life on planets orbiting other stars. In seeking to understand these phenomena, astrophysics science embodies some of the most enduring quests of humankind.

Through its Astrophysics Division, NASA leads the nation on a continuing journey of transformation. From the development of innovative technologies, which benefit other areas of research (e.g., medical, navigation, homeland security, etc.), to inspiring the public worldwide to pursue STEM careers through its stunning images of the cosmos taken with its Great Observatories, NASA's astrophysics programs are vital to the nation.

NASA's strategic objective in astrophysics is to discover how the universe works, explore how it began and evolved, and search for life on planets around other stars. Three broad scientific questions flow from this objective:

- How does the universe work?
- How did we get here?

• Are we alone?

Each of these questions is accompanied by a science goal that shapes the Astrophysics Division's efforts towards fulfilling NASA's strategic objective:

- Probe the origin and destiny of our universe, including the nature of black holes, dark energy, dark matter and gravity
- Explore the origin and evolution of the galaxies, stars and planets that make up our universe
- Discover and study planets around other stars, and explore whether they could harbor life

The scientific priorities for astrophysics are outlined in the NRC decadal survey New Worlds, New Horizons in Astronomy and Astrophysics (http://www.nap.edu/catalog/12951/new-worlds-new-horizons-in-astronomy-and-astrophysics). These priorities include understanding the scientific principles that govern how the universe works; probing cosmic dawn by searching for the first stars, galaxies, and black holes; and seeking and studying nearby habitable planets around other stars.

The multidisciplinary nature of astrophysics makes it imperative to strive for a balanced science and technology portfolio, both in terms of science goals addressed and in missions to address these goals. All the facets of astronomy and astrophysics—from cosmology to planets—are intertwined, and progress in one area hinges on progress in others. However, in times of fiscal constraints, priorities for investments must be made to optimize the use of available funding. NASA uses the prioritized recommendations and decision rules of the decadal survey to set the priorities for its investments.

NASA's Astrophysics Division has developed several strategies to advance these scientific objectives and respond to the recommendations outlined in the decadal survey on a time horizon of 5-10 years. The successful development of JWST is an Agency priority. Since its re-baseline in 2011, the project has remained on schedule and within budget for an October 2018 launch. JWST and the science it will produce are foundational for many of the astronomical community's goals outlined in the 2010 decadal survey. NASA's highest priority for a new strategic astrophysics mission is the Wide Field Infrared Survey Telescope (WFIRST), the number one priority for large-scale missions of the decadal survey. NASA plans to be prepared to start a new strategic astrophysics mission when funding becomes available. NASA also plans to identify opportunities for international partnerships, to reduce the Agency's cost of the mission concepts identified, and to advance the science objectives of the decadal survey. NASA will also augment the Astrophysics Explorer Program to the extent that the budget allows. Furthermore, NASA will continue to invest in the Astrophysics Research Program to develop the science cases and technologies for new missions and to maximize the scientific return from operating missions.

See Section 4.4 of the NASA 2014 Science Plan for specifics, including missions currently in operation, in formulation or development, and planned for the future.

IV. Space Technology Mission Directorate Research

Space Technology Mission Directorate (STMD) is responsible for developing the crosscutting, pioneering, new technologies, and capabilities needed by the agency to achieve its current and future missions. STMD rapidly develops, demonstrates, and infuses revolutionary, high-payoff technologies through transparent, collaborative partnerships, expanding the boundaries of the aerospace enterprise. STMD employs a merit-based competition model with a portfolio approach, spanning a range of discipline areas and technology readiness levels. By investing in bold, broadly applicable, disruptive technology that industry cannot tackle today, STMD seeks to mature the technology required for NASA's future missions in science and exploration while proving the capabilities and lowering the cost for other government agencies and commercial space activities.

Research and technology development take place within NASA Centers, in academia and industry, and leverages partnerships with other government agencies and international partners. STMD engages and inspires thousands of technologists and innovators creating a community of our best and brightest working on the nation's toughest challenges. By pushing the boundaries of technology and innovation, STMD allows NASA and our nation to remain at the cutting edge. Additional information on the Space Technology Mission Directorate (STMD) can be found at: (http://www.nasa.gov/directorates/spacetech/about us/index.html)

Areas of Interest

Space Technology Mission Directorate (STMD) expands the boundaries of the aerospace enterprise by rapidly developing, demonstrating, and infusing revolutionary, high-payoff technologies through collaborative partnerships. STMD employs a merit-based competition model with a portfolio approach, spanning a wide range of space technology discipline areas and technology readiness levels. Research and technology development take place at NASA Centers, academia, and industry, and leverages partnerships with other government agencies and international partners.

STMD executes its mission according to the following tenets:

- Advancing transformative and crosscutting technologies that can be directly infused into future missions;
- Investing in a comprehensive portfolio covering low to high technology readiness levels;
- Competitively selecting research by academia, industry, and NASA Centers based on technical merit;
- Executing with lean structured projects with clear start and end dates, defined budgets and schedules, established milestones, and project level authority and accountability;
- Operating with a sense of urgency and informed risk tolerance to infuse quickly or terminate judiciously;
- Partnering with other NASA Mission Directorates, other government agencies, and the private sector to leverage resources, establish customer advocacy, and support US commercial aerospace interests;
- Delivering new inventions, enabling new capabilities and creating a pipeline of NASA and national innovators

Current space technology topics of particular interest include:

- Advanced manufacturing methods for space and in space
- Autonomous in-space assembly of structures and spacecraft
- Ultra-lightweight materials for space applications
- Materials and structures for extreme environments (high temperature, pressure)
- Extreme environment (including cryogenic) electronics for planetary exploration
- Advanced robotics for extreme environment sensing, mobility, and manipulation
- Deep space optical communication
- Extremely High Frequency microwave technologies for communication, remote sensing, and navigation
- Advanced power generation, storage, and transfer for deep space missions
- Advanced entry, decent, and landing systems for planetary exploration
- Efficient in situ resource utilization to produce items required for long-duration deep space missions including fuels, water, oxygen, food, nutritional supplements, pharmaceuticals, building materials, polymers (plastics), and various other chemicals
- Radiation mitigation for deep space crewed missions
- Biological approaches to environmental control and life support systems
- Autonomous systems for deep space missions
- Advanced telescope technologies for exoplanet imaging
- Low size, weight, and power components for small spacecraft including high-bandwidth communication from space to ground, inter-satellite communication, relative navigation and control for swarms and constellations, precise pointing systems, power generation and energy storage, thermal management, system autonomy, miniaturized instruments and sensors, robotic assembly/manufacturing, and in-space propulsion
- Enabling technologies for low-cost small spacecraft launch vehicles
- Advancements in engineering tools and models supporting Space Technology focus areas