

Oregon State University NASA USLI

11/15/2019

1) Competition

- 2) 2019 OSU USLI Team
- 3) OSU Rocket and Rover
- 4) Performance and Results

What is USLI?

- 8 month competition
- 45 universities competed

2019 Competition

- Rocket had a target altitude of 4,500 ft.
- Carried a ground deployable rover payload

Mission Overview

- 2. Motor burnout
- 3. Separation at apogee
- 4. Drogue parachutes deploy
- 5. Main parachutes deploy
- 6. Landing
- 7. Rover deployment
- 8. Soil collection
- 9. Scientific experiment

Not to Scale

- 1) Competition
- 2) 2019 OSU USLI Team
- 3) OSU Rocket and Rover
- 4) Performance and Results

2019 OSU USLI Team

• 12 ME

• 2 ECE

• 3 CS

14 Volunteers

- 1) Competition
- 2) 2019 OSU USLI Team
- 3) OSU Rocket and Rover
- 4) Performance and Results

Launch Vehicle Overview

- Total Weight: 56.9 lbf
- Airframe Inner Diameter: 6.25 in.

Launch Vehicle Design

Airframe

Aft Section

- 52 in. Body Tube
 - 24 Fiberglass (Fore)
 - o 28 Carbon Fiber (Aft)
- Motor Retention
 - o G12 Fiberglass Motor Tube
 - o 3x Plywood Centering Rings
 - o 6061 Aluminum Retainer

Canister and Coupler

- Coupler
 - 5 1/8 in. within Nosecone
 - 6 1/8 in. within Fore Body Tube
- Canister: 23.5 in. Long
 - o 7 in. within Fore Body Tube
 - o 16.5 in. within Aft Body Tube
- Contains:
 - o Camera System
 - o Aft Electronics Bay
 - Aft Parachutes

Pressure Seal

- Six ¼-20 bolts compress a Santoprene rubber sheet
- Removable
- Minimizes needed charge size
- Radially mounted
- Provides a mounting point for parachutes

Fore Ejection Bay

- o RF shielded
- Pressure sealed
- Fore parachute mounting point

- Weight: 2.02 lbf
- Length: 6 in.
- Additively manufactured mount

Fore Avionics Bay

- o RF transparent
- Conserves space
- Pressure sealed

- Weight: 0.65 lbf
- Length: 5in.
- o Additively manufactured mount

Aft Ejection and Avionics Bay

- o RF shielded
- Mounting point for aft parachutes
- Specifications
 - Weight: 2.33 lbf
 - o Length: 8.5 in.
 - Additively manufactured mount

Camera System

- 2 GoPro HERO3s
- 1 GoPro HERO5
- 2 YI 4K Action Cameras
- Five recording combined into 360° video
- Lightweight and durable

BEAVS

- Four blades extend through airframe
- Driven off central gear
- Control system utilizes ATU sensors

Passive System

- Coupled ballast bays in Fore and Aft
- Adjust apogee altitude & maintain CG

BEAVS

- Electronic systems not present for full scale flight
- Mechanical systems present in flight

Passive System

- First full scale flight 0.0 lbf
- Second full scale flight 2.0 lbf

Ballast Bays

Wind Speed (mph)	Fore Ballast (lbf)	Aft Ballast (lbf)	Stability (calibers)	Apogee Altitude (ft)
0	0.14	1.03	2.10	4500
5	0.10	0.98	2.10	4500
10	0.06	0.93	2.10	4500
15	0.02	0.88	2.10	4500
20	0.00	0.71	2.11	4500

Radial Bolt Testing

- Withstands 75 G
- Test Procedure
 - Instron Compression test bulkheads and aluminum ring
- Status Complete
 - o Plywood bulkhead failure
 - Plywood with aluminum ring success
 - Aluminum ring success

Airframe Structures Testing

- o Withstands 15 G
- Test Procedure
 - Instron Compression test fiberglass airframe section with holes
- Status Complete
 - Handled 46.5 G
 - Not tested to failure

Final Motor Choice

- Total Impulse: 1,103 lbf-s
- Avg. Thrust: 534 lbf
- Max Thrust: 586 lbf
- Rail Exit Velocity: 83.4 ft/s
- T/W: 10.30

Stability Margin

• Center of Gravity: 71.0 in.

• Center of Pressure: 84.7 in.

Predicted Altitude in Huntsville, AL

Wind Speed (mph)	OpenRocket Predicted Altitude (ft)		
0	4,642		
5	4,637		
10	4,625		
15	4,607		
20	4,571		

^{*}Simulated with 0.0 lbf ballast

Mass Statement

Section	Weight (lbf)		
Body	19.9		
Bays	13.2		
Recovery	8.56		
Rover	6.01		
Motor	9.17		
Total	56.9		

MASS STATEMENT

Recovery

 Packed in deployment bag with Kevlar blanket

• Nylon 1 in. shock cord

Recovery - Parachute Information

- Descent time
- Landing kinetic energy

Output determined:

- 1.5 ft drogue parachutes
- 8 ft main parachutes

Recovery - Fore Layout

Recovery - Aft Layout

Recovery - Ejection Charge

- 4.0 g Primary
- o 6.0 g Backup
- 4.0 g Deployment Bag Charges (x2)

Aft Section

- 5.5 g Primary
- o 8.0 g Backup
- 4.0 g Deployment Bag Charges (x2)

USZ

Nosecone

Recovery - Velocity & Kinetic Energy

Weight (lbf)

Section	Nosecone	Fore	Aft	
Weight	5.1	18.2	20.1	

Velocity (ft/s)

115.0

SectionTumblingDrogue OnlyMain & DrogueFore115.0111.015.1Aft116.0112.014.2

111.0

15.1

Kinetic Energy (ft-lbf)

Section	Tumbling	Drogue Only	Main & Drogue	
Fore	re 3,740.7 3,485.0		64.2	
Aft	4,207.5	3,922.4	62.7	
Nosecone	1,042.0	970.8	17.9	

Recovery - Descent Times & Drift

Wind Speed	0 mph	5 mph	10 mph	15 mph	20 mph	Descent Time (s)
Drift of Fore Section (ft)	0	492	984	1,476	1,967	67
Drift of Aft Section (ft)	0	519	1,039	1,558	2,077	71
OpenRocket Simulation	2	369	711	1,071	1,394	68

Recovery - Separation Demonstration

- o 5 consecutive tests fully separate launch vehicle
- Expel drogue and retain main
- Expel main

Test Procedure

- Assemble launch vehicle
- Secure airframe
- Ignite charges
- Status Complete

Recovery - Pressure Demonstration

 All three e-matches ignite in the correct order

Test Procedure

- Assemble altimeter sleds
- Create a pressure seal inside bays
- Pull air out with a vacuum

• Status - Complete

- All three e-matches ignited
- Timing was correct on auxiliary port

Avionics and Ground Station

Avionics - Active Tracking

 Collects, logs, and transmits GPS data from GPS, GLONASS, and BeiDou satellite networks

900 MHz and 433 MHz RF transmission bands

- Not working simultaneously, configurable via software
- XBee Pro (900 MHz transceiver) runs at 250 mW
- TI CC 1200 (433 MHz transceiver) runs at 40 mW

Avionics - Testing

 Both configurations work under full power draw for 8+ hours

 Continuously transmitted past 2,500 ft reliably

Interfaces with Ground Station

- 900 MHz and 433 MHz RF transmission of GPS coordinates from flight ATUs
- 900 MHz transmission of PLEC trigger signal from ground station to PLEC
- PC displays data over serial monitor

Rover Interface

- Ground station sends position coordinates to rover over 900 MHz band
- Sends launch vehicle airframe locations and scientific base station

Vehicle Demonstration Flight

Test Launches

Launch Footage

Full Scale: Data Analysis

Maximum Altitude	4548 ft
Maximum Velocity	588 ft/s
Maximum Acceleration	621 ft/s ²

Full Scale: Fore Section Analysis

Maximum Altitude	4548 ft	
Impact Velocity	11.7 ft/s	
Fore Impact Kinetic Energy	38.5 ft-lbf	
Nosecone Impact Kinetic Energy	10.7 ft-lbf	
Descent Time	72.6 s	

Full Scale: Aft Section Analysis

Maximum Altitude	5079 ft	
Impact Velocity	11.5 ft/s	
Aft Impact Kinetic Energy	65.9 ft-lbf	
Descent Time	79.6 s	

Full Scale: Drift Analysis

Drift Distance vs Time Orift Distance [ft] X 92 Y 312.7 Time [s]

Overhead View of Drift Profile

Payload Mechanical

Payload Overview

- Total Length: 13.95 in.
- Total Weight: 6.01 lbf

Chassis

- Connection Blocks Aluminum
- Rods Carbon Fiber
- Tail Three Ply Carbon Fiber

Drivetrain

 Two independently-controlled motor/wheel assemblies mounted within rover chassis

Drivetrain

- 6.00 in. diameter PLA wheels
 - Urethane foam tire
- Compressed tires (1) exert force on airframe interior
- Tires quickly expand upon ejection (2)
 - Increases ground clearance by 0.50 in.

SCAR

Auger fed into soil

• Soil Retention

Two independent doors

Navigation

- 2. Magnetometer Heading as angle from North in 1 degree increments
- 3. GPS Multi sample implementation with accuracy of 30 ft in any direction
- 4. Sonar Directional detection of obstacles

Collection and Retention

- 2. Motor Encoders
- 3. Accelerometer Levelness sensing
- 4. Transceiver Receives coordinates of the airframe and scientific base station
- 5. Teensy 3.6 Microcontroller

Mobility Testing

Rover Orientation

Object Avoidance

30° Slope Climb

Rover Printed Circuit Board

- Final PCB incomplete
- Protoboard Shield PCB incomplete

Payload Software

Rover Software

- 1. Reliably move away from launch vehicle
- 2. Soil collected and sealed
- 3. Receive GPS data and sample count via RF
- 4. Travel to the coordinates given
- 5. Dock and deposit soil sample into a collection chamber for analysis
- 6. Exit the base station to retrieve additional soil samples until sample count is reached

Beaglebone CV Testing

 Successful circle detection with no false positives

 Minimal extra lines drawn by Canny threshold

Rover Navigation Testing

- Allow rover to navigate with obstructions
- Radio Frequency Communication Incomplete
 - Send GPS coordinates to the rover at varying distances
- Docking Incomplete
 - Allow rover to climb base station and deposit soil

Payload Ejection and Retention

Payload Ejection and Retention

- o Payload Wrap Assembly
- Removable Retention Assembly
- Payload Ejection Controller (PLEC)
- Integrates into airframe to the Fore Hard Point (FHP)

Fore Hard Point

- Funnel for integration
- Bulkheads for PEARS retention
- Removable for safety procedures in event of failed payload ejection

Epoxied in airframe to create pressure seal

Payload Wrap Assembly

- Plywood bulkheads for ejection protection
- Kevlar harness retains rover and attaches to retention devices on removable assembly

Ejection and Retention

- Wrap retained to removable assembly
 - Two L2 Tender Descenders and ARRD
- Ejected with black powder charges
 - Primary: 1.2 g
 - o Backup: 2.0 g

Payload Ejection Controller

- Sequential e-match ignition tested
- Mounted on removable assembly
- Contained within RF shielded case
- Armed with DPST switch

Integration in Fore Airframe

- Pressure seal between PEARS bulkhead and FHP
- Fore ballast bay mounted on threaded rod fore of FHP
- PLEC armed from exterior once on the launch rail

PEARS Testing

• Successful ground testing of ejection sequence

Successful retention and deployment during test flights

PEARS Testing

Payload Demonstration Flight

- Scheduled for March 16th in Brothers, OR
 - Will be flown with Cesaroni L25375-WT
- Flight will also act as Vehicle Demonstration Re-Flight
 - Max ballast configuration

Scientific Base Station

Scientific Experiment

Mapping of pH samples

• Rover navigates up ramps

o CV sees circles on ground station

Rover deposits soil into grate

- 1) Competition
- 2) 2019 OSU USLI Team
- 3) OSU Rocket and Rover
- 4) Performance and Results

Competition Launch

Payload Deployment

Payload Mission

STEM Engagement Event Pictures

STEM Engagement Events

Date	Event	Engagement Number
Oct. 26	Yamhill-Carlton Rocketry	27
Oct. 31	Discovery Days	950
Nov. 9	Veneta Elementary	350
Nov. 14	OSU Women's Basketball	150
Nov. 27	OSU Honors Colloquium	12
Dec. 15	Evergreen Air & Space	150
Dec. 19	Westview High School	96

Date	Event	Engagement Number
Jan. 18	Lenox Elementary	520
Jan. 19	Cub Scout Lock-In	250
Jan. 26	Western University	100
Jan. 26	Reaching for the STARS	500
Feb. 19	Franklin Elementary	28
Feb. 28	Philomath Middle School	229

Total: 3,362

Summary of Requirements

<u>Team Derived Requirement Verifications</u>

2018-2019 Competition Results

Team Achievements:

- Completed 5 rocket launches
- Rover successfully deployed
- Taught 4,820 K-12 students

Scoring:

- 4th Overall out of 45 Teams
 - 1st in Launch Vehicle Award
 - 3rd in Project Review Award
 - 3rd in Altitude Performance
 - 3rd in Rocket Fair Display

Acknowledgments

Oregon Space Grant Consortium

- Catherine Lanier
- Jack Higginbotham
- Shirley Campbell
- Oregon State College of Engineering
 - Dr. Squires
- Oregon Rocketry
 - John Lyngdal, Joe Bevier, Alan Hammond
- Industry Sponsors

Questions?