Space Food Development
SFSL Internship Presentation
Johnson Space Center
Summer 2014

Emily Darchuk
Master’s Student in Food Science and Technology
Oregon State University
What is the Space Food Systems Lab (SFSL)?

Mission Statement:

To provide high-quality flight food that meets the needs of the crew, mission and the unique logistics of space travel.
Space Food Systems Lab (SFSL)

Organization

AFT: Advanced Food Technology Group

* Develop technologies to support **future** missions
 * Improved packaging & shelf life extension
 * Product development for nutritional efficiency
 * Mass reduction
 * Expand processing capabilities

ISS: International Space Station Support Group

* Support **current** missions
 * Food Production and packaging
 * Product development & sensory evaluation
 * Menu planning & supply management
Internship Outline

• 10 Week Internship to support the SFSL

ISS:
• Develop a versatile dairy sauce as a base for dairy-based freeze dried food applications
 • The complex must rehydrate easily in warm water and result in a creamy mouth feel
 • Final demonstration of the complex should be performed in at least 2 freeze dried products

AFT:
• Conduct a literature review on the bioavailability of Vitamin A, K, B5, B6, B7, B9, B12, Potassium, Selenium, Zinc, Manganese, Copper, Iron
 • Review current scientific literature on bioavailability of nutrients and how they are affected by form, ingredient interactions and processing conditions
 • Characterize the conditions that reduce or improve bioavailability of nutrients for future food development
ISS Project Background

• A reformulation to reduce sodium has led to rehydration issues with cream of mushroom soup
• The cream base of the beef stroganoff had room for improvement
• Dairy based sauces are missing from the current menu
Unique Requirements for Space Food

• **Nutritional Demands**
 - Caloric density to support active astronauts
 - Low sodium to prevent ocular issues from zero gravity habitation
 - A balanced and varied diet to support performance and health

• **Shelf life**
 - Shelf stable
 - Must have extended shelf life
 - Meet microbial limits for launch

• **Ingredient Availability**
 - Be able to be sourced constantly
 - Production scale limitation

• **Flavor and Functionality**
 - Reduced flavor perception
 - Functionality in micro gravity
 - Provided in single servings
Development Strategy

• Approached dairy base as a Roux/ Béchamel
 • Starch + Dairy

• Focused initially on commercial ingredients then widened to industrial ingredients

• Ingredient interactions were also screened based on literature review learnings
 • Impact of protein
 • Impact of form: solid brick vs powdered
 • Impact of hydrocolloids and dispersants
25 starches were screened within 4 trials

- Addition of protein did not improve hydratability
- Pulverization did not improve hydratability enough to offset added complexity and risk
- Of store purchased starches, tapioca is the best for this application although industrial starches are more robust and provided better texture
- The recommended option is an industrial modified starch + maltodextrin
Formula Development

• Incorporated the dairy base into 3 freeze dried meals
 • Cream of Mushroom Soup
 • Beef Stroganoff
 • Angel Hair Alfredo
Formula Development

- Participated in Food Sessions, Bonus Sessions and Debriefs
 - Flavor and texture profile of current ISS menu
 - Hydration and serving constraints of zero gravity
 - Flavor profiles that the astronauts like
 - Opportunities to improve perceived flavor within low sodium items (spice/pepper/garlic)

https://twitter.com/Astro_Sabot
Cream of Mushroom Soup Development

Goals

- Increase flavor intensity without added sodium or replacers
 - Shift to a white pepper spice profile
 - Increase the mushroom intensity

- **Improve the texture**
 - Increase rehydratability of the base
 - Investigate modifications of both form and formulation
 - Look to increase the viscosity enough to allow it to be spoonable out of an EDO vs. sipped through a straw
Soup Viscosity
Increasing viscosity
Viscosity Data

- Spoonable Reform: 6.5
- Drinkable Reform: 16
- SFSL LS Reform: 24

Bostwick Data (cm in 30 sec)
Soup Summary

• Changed form from drinkable to spoonable
• Solved rehydration issues
• Created a more complex flavor profile
• Proof of process of developed dairy base in soup format
• Prepared formula for future sensory testing and scale up
Beef Stroganoff Development Goals

• Increase flavor intensity without added sodium
 • Shift to a more complex spice profile
 • Increase the dairy profile

• Improve the texture and satiety
 • Improve the creamy texture of the sauce
 • Proof of process of dairy base for multiple formulations
Sensory Results

• 35 gram sample hydrated w/ 75ml 150°F +/- 5 °F

 • Sensory score 6.03
 • SD 1.86
 • n=29
Panelist Feed Back

• **Cream Sauce**
 - Sauce texture and ratio was well received
 - Sour Cream Intensity seemed just about right – 66%
 - Creaminess seemed just about right – 79%

• **Seasoning**
 - Seasoning was well received
 - If changes are made increase intensity keeping similar profile
In Conclusion

• All project objectives were met for both ISS and AFT

• Cream of Mushroom Soup is currently scheduled for panel later this year
• Beef Stroganoff formula met requirements for flight
In Summary....

Thank you !!!
Questions?