

OreSat: Oregon's First Satellite

PSU's Open Source Space Program

What We're About

- OreSat Open Source Project
 - Public Design Repositories
 - InterUniversityCollaboration effort

- Customizable Controller
 - Open source mission

Drop Tower Test

- Reaction wheels
 - We want to point the satellite at things so we can take pictures and use DxWifi
 - Need four. Three for 3 degrees of freedom and a fourth for redundancy
- Magnetorquers
 - BBQ roll to disperse heat across the entire system
 - Need three

Structural Overview

High Functioning Encoder

- 14 bit (16k points) precision over spi
- Simulated Hall effect output
- Quadrature Encoding
- No moving parts

Range of Power Input

- Buck Boost Converter
- Motor Driver
- Magnetorquer driver

COTS Systems

Our System

- > \$5000 per RW
- > \$1000 for magnetorquers
- > \$5000 for Magnetorquer
 Controller

- < \$300 per RW
- Estimated < \$600 for Magnetorquers + Control
- Total Estimated < \$2000

- Requirements
 - Open source
 - Easy to maintain
 - Adaptable to a wide range of applications
 - Modular
 - Integrates with OreSat architecture

Existing Solutions

- Reaction wheels
 - Vesc (Benjamin Vedder)
 - Intended for skateboards
 - Skateboards don't work in space
 - Too complicated
 - SimonK (Standard simple ESC for RC)
 - Basic plug and play
 - Too simple

- Custom magnetorquer and BLDC motor control
- Microcontrollers and motor drivers manufactured by STMicroelectronics
- ChibiOS (small OS)
 - Lightweight, open source RTOS
 - Well supported and documented
 - Strong community driving development

- Controller Area Network
 - Reliable communication in noisy environments like space
 - Differential signaling is cool
 - Thanks Miles!

ACS State Machine

ACS State Machine

- System control model
- Adaptable to many applications
- Flexible state table design
 - Allows for easy addition and removal of states
- We want other people to use and improve upon our work.
- Already being ported to other OreSat applications!!!

- STM32F042K6 (ARM Cortex-M0)
 - Low power consumption
 - No floating point arithmetic
- STM32L452 (ARM Cortex-M4)
 - This one is awesome!
 - Lower power consumption
 - Faster
 - Yay floating point arithmetic!

Sinusoidal vs FOC

- Sinusoidal
 - Simple method for motor position control
 - Implemented using a duty cycle look up table
 - External control required for velocity
- Field Oriented Control
 - Motor position with current feedback for velocity control
 - Fortunately, proportional-integralderivative control is a breeze

Proportional-Integral-Derivative Control

Automotive example

Our Design Focus

Architecture

rather than Application

- Predictability
- Modularity

Documentation, documentation, documentation

Clean and clear abstractions

Clean and clear abstractions

Documentation with

Automatic documentation generation

Documentation with

Automatic documentation generation

- Oregon's first satellite!
- Going to space in 2019/2020
 - Courtesy the NASA CubeSat Launch Initiative

