Flight-Ready Electric Feed System

MME 2018-2019 Capstone Project

SPONSORS:

Portland State Aerospace Society
Oregon NASA Space Grant Consortium

INDUSTRY ADVISOR:

Andrew Greenberg

PRINCIPLE INVESTIGATOR:

Dr. Mark Weislogel

TEAM MEMBERS

Shayli Elrod Julio Garcia Henry Ju Nick Sheldon Jonas Mendoza Philip Wahl

PRESENTATION AGENDA

- > Project Proposal
- Project Requirements
- Design
- > Manufacturing
- > Results
- > Continuation

CAPSTONE PROPOSAL

PROJECT SPONSOR

Portland State Aerospace Society

Oregon NASA Space Grant Consortium

PROJECT PROPOSAL

Develop an Electric Feed System to pump two propellants for a liquid rocket engine.

CUSTOMER REQUIREMENTS

CUSTOMER REQUIREMENTS			
REQUIREMENT	PRIORITY		
Must be tested with liquid nitrogen (LN2) and isopropyl alcohol (IPA)	5		
Must safely keep the propellants separated at all times	5		
Should have emergency shut off procedure and battery cutoff	5		
Must deliver propellants at 450psi with NPSH of 45-100psi	4		
Should have embedded sensors for data acquisition	4		
Should have embedded sensors for feedback and control	3		
Must be compatible with liquid oxygen (LOX)	3		

ENGINEERING REQUIREMENTS

ENGINEERING REQUIREMENTS			
REQUIREMENT	UNIT	ORIGINAL VALUE	FINAL VALUE
Pressure	psi	400	450
Mass Flow	lbm/s	2.04	2.04
Total Shaft Power	kW	5	5
IPA Rotational Speed	rpm	20,000	35,600
LN2 Rotational Speed	rpm	15,000	24,400
Engine Thrust	kN	2.2	2.2
Module Diameter	in	12	12

DESIGN

EFS

DESIGN

IPA PUMP

- > 3.0" Impeller Diameter
- > 35,700 RPM
- > 1.7 kW Power
- > FlowServe Type 15 Seal
- Stainless Thrust Bearing
- 6061 Aluminum Case and Impeller

DESIGN

LOX PUMP

- > 2.5" Impeller Diameter
- > 24,300 RPM
- > 2.1 kW Power
- > Teflon Seal
- BOCA Ceramic Bearing
- Stainless Thrust Bearing
- ➤ 6061 Aluminum Case and Impeller

MANUFACTURING

Impeller

MANUFACTURING

Pump Case

RESULTS

RESULTS

CONTINUATION

WEIGHT REDUCTION

- Case Geometry
- Integrated Motor Assembly
- > Reduce Hardware

CONTINUATION

AIRFRAME INTEGRATION

- Develop mounting system
- > Design Internal Piping
- > Identify Flow losses
- > Sensor integration

THANK YOU

Portland State Aerospace Society

Oregon Space Grant Consortium

Andrew Greenberg

Rebecca Routson

Mike Chuning

Baldur Steingrimsson

Portland State MME Department

