

Pump-Fed Reaction Control Systems

For Lunar Lander Applications

Keenan Siminski

University of Oregon

NASA - Marshall Space Flight Center Summer Intern

Redstone Arsenal - Huntsville Alabama

RCS Systems in Lunar Landers

- Used to make corrections in vehicle orientation
- Historically in "thruster clusters" of three or more nozzles
- Hypergolic propellants as in Apollo missions for quick bursts
- Working Principle: Take in error signal from gyroscope or inclinometer, open corresponding valves to correct

RCS Systems in Lunar Landers

- Traditionally use helium tanks and associated hardware to pressurize propellants
- Many heavy regulators required to maintain sufficient pressure at thruster inlets during firing sequences

APS Engine Propellant Pressurization and Flow

RCS Systems in Lunar Landers

- Pump-fed design instead of high-pressure tanks
- Potential to save weight by using lower pressure tanks with thinner walls, possibly also eliminate helium pressurization
- Pressure can be regulated with just one back pressure regulator and by varying pump speed
- Saving weight means larger payloads for long-term and permanent lunar missions

Considerations for Pump-Fed Test System

- Constant pressure is paramount, regardless of thruster activity
- Opening thruster valves results in significant pressure slumps
- Back pressure regulator and variable pump speed to modulate pressure

Considerations for Pump-Fed Test Article

- Began testing with a water pump system
- When orientation error signal is received:
 - Increase speed of pump (increase proportional to number of thrusters) while opening thruster valves (or just before)
 - From graph, pump clearly taking too long to ramp up, but quickly ramping = pressure spikes
 - Not off to a great start...

NASA

Considerations for Pump-Fed Test Article

- Now that looks better
- How were the two previous problems mitigated?

Considerations for Pump-Fed Test Article

- Set pump to very quickly ramp as soon as the valve is opened
- Again increase speed proportionally with number of thrusters
- Simultaneously (or even slightly ahead of time) decrease BPR setting to bleed off extra during pressure spike

Hands on at Marshall Space Flight Center

Moving to Cryogenic Liquid Nitrogen System

Hands on at Marshall Space Flight Center

Moving to Liquid Nitrogen System

- Start by sizing pipes, 1" OD fits our flow rates
- Must be sure we can insulate reasonably
- Based on this graph we determined that 3cm of insulation would provide acceptable heat losses through pipes

Hands on at Marshall Space Flight Center

Moving to Liquid Nitrogen System

- Now know we need a ventilation system
- Learned to cut, bend, flare, fit, and seal tubing
- Spent over half of internship constructing ventilation system
- Refined skill in machining, designing, and 3D printing

- Designed and fabricated iron frame to elevate vent system
- Welded frame together, installed valves and fittings (half finished in picture)
- After finishing vent system, ended internship with miscellaneous fabrication projects for solid rocket team

NASA

Hands on at Marshall Space Flight Center

Thank You!

And a special thank you to Oregon Space Grant Consortium for funding this internship

Pump-Fed Reaction Control Systems

Keenan Siminski
NASA - Marshall Space Flight Center Summer Intern