The Effect of UVC Radiation on Tardigrades

Anya DeCarlo
Portland Community College
Mentored by Brett Schaerer

The material contained in this document is based upon work supported by a National Aeronautics and Space Administration (NASA) grant or cooperative agreement. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of NASA.
Tardigrade Species

- Aquatic animals
- Require film of water around their body
- 100-500 micrometers
- Commonly found on moss, freshwater, and other damp places
- Variation in species dependent on environment
Hypsibius exemplaris
- Freshwater tardigrade
- In most cases, species does not show strong evidence of high survivability in extreme conditions

Ramazzottius varieornatus
- Terrestrial tardigrade
- Species exhibits extraordinary capacity to withstand extreme conditions such as ionizing radiation and UVC radiation
Mechanism of Resistance to Radiation

Hydrated State

- Special protein phrA suggested as mechanism for DNA repair in *R. varieornatus*
- *H. exemplaris* does not show evidence of phrA protein
- Mechanism of UVC and radiation resistance in *H. exemplaris* largely unknown

Dehydrated State

- Metabolism halted, water content decreased, and cellular content is encased in special protein
- State referred to as tun state
- Tolerance of UVC radiation in terrestrial tardigrades is higher in a desiccated state
- Both *R. varieornatus* and *H. exemplaris* can enter into a dehydrated state

Journal of Insect Physiology
Hypsibius exemplaris
freshwater tardigrade used in project

- Does not show such evidence of high survivability in most extreme conditions, such as high doses of UVC radiation.
- Exhibit high tolerance to gamma radiation
- Capacity to withstand high doses of gamma radiation in a hydrated state suggests mechanisms of tolerance besides desiccation.
- Variation in the resistance to UVC and gamma radiation suggest differences in genetic makeup of freshwater and terrestrial tardigrades
Can *H. exemplaris* withstand low doses of UVC radiation?

In this project, we studied the effect of UVC radiation on the freshwater tardigrade, *H. exemplaris*.

The presence of tardigrades after exposure to varying doses of UVC radiation was used to measure tardigrade resistance to UVC.

We hypothesized that freshwater tardigrades would have a lower survival rate after exposure to higher dose of UVC radiation.

This would show a negative correlation between tardigrade survivability and UVC radiation.

Thus, as the dose of UVC radiation increases, the proportion of tardigrade survival decreases.
Materials and Methods

- Three jars of *H. exemplaris* and one jar *Chlorococcum sp.* obtained from Carolina Biological Supply Company
- Tardigrades were transferred to 24 well-cell culture plates with a culture area of 2 sq. cm a well volume of 3.5 mL
- 18 cell plates were used to transfer tardigrades.
- Dose groups were created by grouping plates, which together summed roughly 50-60 tardigrades
- Each well contained 2 mL of a 1.5% bacto-agar gel
- Tardigrades were kept hydrated with spring water via pipette
- Culture plates were maintained in room temperature conditions with constant light exposure
Materials and Methods

- Exposed to UVC radiation via G15T8 Base Germicidal UV Light Bulb
- Each dose group was placed in the enclosure with the light off
- The light was switched on and remained on for the calculated time depending on the dose group.
- After the allotted time passed, light was turned off and each dose group remained in the enclosure for two minutes
<table>
<thead>
<tr>
<th>Dose</th>
<th>Number of Wells</th>
<th>Average Tardigrades Per Well</th>
<th>Standard Deviation</th>
<th>Time spent in UVC enclosure with light on</th>
<th>Total time in UVC Enclosure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 kJ/m²</td>
<td>6</td>
<td>9.67</td>
<td>12.32</td>
<td>0s</td>
<td>120s</td>
</tr>
<tr>
<td>0.5 kJ/m²</td>
<td>24</td>
<td>2.62</td>
<td>2.69</td>
<td>23s</td>
<td>120s</td>
</tr>
<tr>
<td>1.0 kJ/m²</td>
<td>27</td>
<td>2.33</td>
<td>1.75</td>
<td>42s</td>
<td>120s</td>
</tr>
<tr>
<td>1.5 kJ/m²</td>
<td>12</td>
<td>5.75</td>
<td>5.83</td>
<td>63s</td>
<td>120s</td>
</tr>
<tr>
<td>2.0 kJ/m²</td>
<td>24</td>
<td>2.46</td>
<td>2.43</td>
<td>84s</td>
<td>120s</td>
</tr>
<tr>
<td>2.5 kJ/m²</td>
<td>26</td>
<td>2.31</td>
<td>2.12</td>
<td>105s</td>
<td>120s</td>
</tr>
</tbody>
</table>

Table 1

A summary of the pretreatment setup
Results

Figure 1

Day 3 Tardigrade Proportion Survival

Figure 1 shows the proportion of tardigrade survival on Day 3 post UVC exposure. The average tardigrade per well was used to calculate this proportion.
Results

Figure 2

Tardigrade Survival

Figure 2 follows the tardigrade survival post UVC exposure. Each data point is the average number of tardigrades per well.
Results

Figure 3

Proportion of Tardigrade Survival by Individual Well

Figure 3 summarizes survivability on Day 3 Post UVC Exposure.
Table 2

Tardigrade Survival on Day 3 Post UVC Exposure

<table>
<thead>
<tr>
<th>Dose kJ/m²</th>
<th>Population Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.5</td>
<td>8.0%</td>
</tr>
<tr>
<td>1</td>
<td>14.2%</td>
</tr>
<tr>
<td>1.5</td>
<td>34.8%</td>
</tr>
<tr>
<td>2</td>
<td>0.0%</td>
</tr>
<tr>
<td>2.5</td>
<td>1.7%</td>
</tr>
</tbody>
</table>
Results

Tardigrade survival and dose found to be weakly correlated, \(r(3) = .34, p = .032 \).

Survivability of tardigrades exposed to the highest dose of UVC radiation at 2.5 kJ/m\(^2\) was 1.7%.
Analysis

- Control group of 0.0 kJ/m² showed a 0% survival rate
- Possible indication of unknown factors contributing to the tardigrade's low survival rate
- Variation in survival among dose groups suggests results may be inconclusive
Acknowledgements

- We thank Deborah Cochrane, Director, Portland Teachers Program, for her guidance and support on the project.
- We thank Jennifer Ward, Mathematics Instructor of Cascade Campus, Portland Community College, for assistance and direction on statistical analysis.
- We thank Tony Zable, PhD Faculty Department Chair, Physics/ESR/Geology/Gen Science Physics Instructor of Cascade Campus, Portland Community College for his expertise and contribution on the calculations for UVC dose.

Gąsiorek, P.; Stec, D.; Morek, W.; Michalczyk, Ł. AU - Michalczyk, Łukasz An integrative redescription of Hypsibius dujardini (Doyère, 1840), the nominal taxon for Hypsibioidea (Tardigrada: Eutardigrada) Zootaxa (2018) 4415, 45-75

