Observing the Growth of Mung Beans Using a Martian Simulant Soil Medium: An Observational study on the potential of interstellar agriculture.

Briar Rogers,
Portland Community College - Southeast

The material contained in this document is based upon work supported by a National Aeronautics and Space Administration (NASA) grant or cooperative agreement. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of NASA
Martian soil - can it sustain life?

- Martian soil has some of the nutrients needed for plant life - silica, iron oxide
- Growing plants in Martian soil could lead to possibility of planetary settlement (more permanent)
- Limits to soil might have impact on how viable growth really is

Research question: Can plants grow successfully in a Martian soil simulant when all other growth conditions remain similar to Earth (light, water, etc)?
Nutrient Information

- Nitrogen: Low, insufficient naturally, may require processing, and additional nutrients
- Plant growth lights: 10 hours per day
- Phosphorous: Sufficiently high for plant growth
- Microorganism inoculants added in with first watering
- pH: slightly alkaline water; 7.1
What was tested

- *Vigna radiata* seeds (common Mung beans) grown; 12 starts total
- Martian Garden soil simulant SMM2
- All growth conditions monitored or kept constant (pH, light, water, etc)
- Plant germination/sprouting, height and healthy used as indicator
What I learned

- Mung beans successfully grew in Martian simulant (11 of 12 seeds planted)
- Plant heights ranged from 4.3 - 16 cm
- Testing for soil nutrients showed Nitrogen (N) deficit present that may have impacted growth or consistency in growth between replicates
Future studies to consider

- Other plant species
- Including Earth control with more time/resources
- Other ways of testing factors like pH, light, nutrient uptake of plants
- More replication to see if results are consistent
References


NASA Oregon Space Grant Consortium: https://spacegrant.oregonstate.edu/